glmapper

每天一道算法题:求两个排序数组的中位数

字数统计: 1.3k阅读时长: 5 min
2018/11/10 Share

题目

有两个大小为 m 和 n 的排序数组 nums1 和 nums2 。

请找出两个排序数组的中位数并且总的运行时间复杂度为 O(log (m+n)) 。

示例1:

1
2
3
4
nums1 = [1, 3]
nums2 = [2]

中位数是 2.0

示例2:

1
2
3
4
5

nums1 = [1, 2]
nums2 = [3, 4]

中位数是 (2 + 3)/2 = 2.5

归并&topK问题

方案1

这个思路就是对于两个有序数组进行合并,合并到一个大的有序的数组中去,然后求合并后数组的中位数。下面代码中使用的是归并排序的方式,对于两个有序数组进行归并排序的。从复杂度的角度来说可以满足题目的要求,但是还是存在一些问题,主要是怎么能够使得时间复杂度变成O{MIN(nums1.length,nums2.leng)}。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
double result = 0.0d;
int[] nums = new int[nums1.length+nums2.length];
int num1index = 0;
int num2index = 0;
int index = 0;
if (nums1.length == 0 && nums2.length == 0){
return result;
}
if (nums1.length == 0){
return getResult(nums2);
}
if (nums2.length == 0){
return getResult(nums1);
}
while(num1index < nums1.length && num2index < nums2.length){
if (nums1[num1index] < nums2[num2index]){
nums[index]= nums1[num1index];
num1index++;
}else{
nums[index]= nums2[num2index];
num2index++;
}
index++;
}

while (num1index < nums1.length){
nums[index] = nums1[num1index++];
index++;
}

while (num2index < nums2.length){
nums[index] = nums2[num2index++];
index++;
}

if (nums.length%2==0)
{
result = (nums[nums.length/2]+nums[nums.length/2-1])/2.0;
}
else{
result = nums[nums.length/2];
}

return result;
}

private double getResult(int[] nums){
double result = 0.0D;
if (nums.length%2==0)
{
result = (nums[nums.length/2]+nums[nums.length/2-1])/2.0;
}
else{
result = nums[nums.length/2];
}
return result;
}
}

方案2

求两个排序数组的中位数

  1. 假设nums1.length = m, nums2.length = n; m < n;
  2. 若(m + n) % 2 == 0, 表示两数组之和为偶数,应该是有两个中位数,因此最终结果为第9行的代码所示。否则,结果为第7行的代码所示。
  3. 为了使得方法的统一,在最初时,对数组进行处理,统一使得传进方法的短数组为nums1,即第14行代码所示。
  4. 如果len1-start1 == 0,则表示nums1已经全部加入前k个了,则第k个为nums2[k -1]; 在方法findKth()中的k是一直变化的,初始时,k为两个数组中排序之后的第k个数的位置;k在方法中的真正含义为“还需要找到多少个数才能达到k个”;因此假设nums1.length ==0;,此时len1-start1 == 0, 则中位数就是nums2[k - 1],即在nums1中找到了0个数,还需要找k个数,第k个数就是nums[k - 1];
  5. 如果k == 1,则表示前k-1小的数已经找过了,则第k个数肯定是nums1[start1]和nums2[start2]中较小的那个数。
  6. 下面接着就是常规的情况:即nums1中包含一部分k,nums2中也包含一部分的k,因此就从每个数组的k/2那里开始比较(也相当于每次都会有一半的数被加入前k个,因此时间复杂度为O(log(m + n))):
    采用p1和p2分别记录当前nums1和nums2需要比较的那个位,由于nums1比较短,因此有可能2/k的位置已经超出了nums1的长度,因此nums1还需要做特殊处理,即第19行代码所示;由于p1做了特殊处理,那p2也就要做特殊处理。总之,start1~p1和start2~p2的和一定为k。
    1)若nums1[p1 - 1] < nums[p2 - 1],则表明【start1, p1)之间的值在前k个数中;
    2)若nums[p1 - 1] > nums2[p2- 1],则表明【start2, p2)之间的值在前k个数中;
    3)若两值相等,则表明【start1, p1)+【start2, p2)的个数为k,则结果直接返回其中一个即可。
    为什么比较的p1和p2的前一个位的数,而不是p1和p2位置的数呢? 举例说明:假设start1== start2 == 0, 则p1 = Math.min(len1, k / 2); p2 = k - p1,即p1 + p2 == k;;假设p1 = 5, p2 = 7;, 则k = 12; 在数组中nums[5]其实是第6个数,nums[7]其实是第8个数,所以我们比较的是nums1[p1 - 1]与nums2[p2 - 1]的值;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int size = len1 + len2;
if(size % 2 == 1)
return findKth(nums1, 0, len1, nums2, 0, len2, size / 2 + 1);
else
return (findKth(nums1, 0, len1, nums2, 0, len2, size / 2) + findKth(nums1, 0, len1, nums2, 0, len2, size / 2 + 1)) /2;
}
public double findKth(int[] nums1, int start1, int len1, int[] nums2, int start2, int len2, int k)
{
if(len1 - start1 > len2 -start2) // 传进来的时候统一让短的数组为nums1
return findKth(nums2, start2, len2, nums1, start1, len1, k);
if(len1 - start1 == 0) // 表示nums1已经全部加入前K个了,第k个为nums2[k - 1];
return nums2[k - 1];
if(k == 1)
return Math.min(nums1[start1], nums2[start2]); // k==1表示已经找到第k-1小的数,下一个数为两个数组start开始的最小值
int p1 = start1 + Math.min(len1 - start1, k / 2); // p1和p2记录当前需要比较的那个位
int p2 = start2 + k - p1 + start1;
if(nums1[p1 - 1] < nums2[p2 - 1])
return findKth(nums1, p1, len1, nums2, start2, len2, k - p1 + start1);
else if(nums1[p1 - 1] > nums2[p2 -1])
return findKth(nums1, start1, len1, nums2, p2, len2, k - p2 + start2);
else
return nums1[p1 - 1];

}
}

原文作者:GuoLei Song

原文链接:http://www.glmapper.com/2018/11/10/leetcode4/

发表日期:November 10th 2018, 1:34:04 pm

更新日期:November 10th 2018, 1:34:36 pm

版权声明:转载请注明出处

CATALOG
  1. 1. 题目
  2. 2. 方案1
  3. 3. 方案2